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3. p-values and confidence

- the p-value is currently a basic tool of inference and yet serious
reservations have been raised to the extent that one journal banned its use
as a "measure of evidence" due to the replicability crisis

- the current approach taken by the statistical profession is to suggest that
there is nothing wrong with p-values rather it is the users who do not
understand how to use them correctly

- so what is a p-value?

Definition Suppose there is a hypothesis Hy C @ concerning the true
value of 6 for the model {fp : 6 € ©} and a statistic T whose probability
distribution Py, is known and fixed for each 6 € Hy and such that extreme
values correspond to large values of T. Then Hy is assessed by computing
the p-value Py, (T > T(x)) for observed value T(x).

- if Py, (T > T(x)) is small, then it is concluded that there is evidence
against Hy
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Question 1: How small is small enough?

- a rejection trial adds the ingredient of a value « € [0, 1] s.t. if

Pr,(T > T(x)) < a, then evidence against is concluded

- historically « = 0.05 has been used but a recent recommendation has
been that this be replaced by &« = 0.005

- will this work?

Example Cornfield (1966)

- x = (x1, . x0) "R N(p, 03) with i € R, 0% known and Ho = {t, }
- then with T,(x) = /n|x — py| /00 ~ |Z| where Z ~ N(0, 1) the
p-value is the Z-test

Pro(Tn = Ta(x)) = P(|Z] = V/n|x = po|/00) = 2(1 = (v/n[% = py|/00))
which < 0.05 when \/E’)_( — ‘140’/0'0 > 20.975

- suppose an investigator collects n data values, performs the Z-test and

gets a p-value of 0.06

- this is close to the 0.05 level so they decide to collect m additional data
values and compute a new Z-test based on the n 4+ m values obtaining
p-value < 0.05 and the result is submitted for publication
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- but this is a two-stage test and, when Hj is true, the probability of
evidence against 1, is
Pro (T > 20.975) + Py (Tm+n = 20.975 | Tn < 20.975) PHy (T < 20.975)
= 0.05+ PHO( m+n = 20.975 ’ T, < 2. 975)(0 95) > 0.05

and so evidence against Hy can never be found at the 0.05 level

- the problem here is the use of the 5% level to determine evidence against
and this problem persists no matter what « level is used, yet collecting
additional data in such circumstances seems like a very natural thing to do

Question 2: Why isn't a large p-value (> a) evidence in favor?
- suppose the probability measure Py, for T is continuous with cdf Fy,
- then Py, (T > T(x)) =1 — Fy,(T(x)) so when Hy is true the
probability distribution of the p-value is when 6 € Hy

Po(1 = Fiy(T(X)) < u) = Pry(Frp(T) 2 1—u) =u
since Fy,(T) ~ U(0,1) when Hj is true

- so when Hj is true all possible values of the p-value are equally likely,
independent of the amount of data while, when when Ho is false, the
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Question 3: Do p-values measure scientific significance or just statistical
significance?

- suppose in the Z-test y,, . = p, +J and ¢ is very small, then for n large
enough Py, (T, > T,(x)) < a even when the difference ¢ is scientifically
irrelevant

- so p-values measure statistical significance not scientific significance

Boring, E. (1919) Mathematical vs statistical significance.
Psychological Bulletin, 16, 10, 335-338.

- the common recommendation to deal with this issue is to compute a
confidence interval for the parameter of interest but this doesn't really help
unless you know the difference that matters § and even then it is
ambiguous as some values in the Cl may be relevant and some not

- the real solution is to incorporate § into the measure of evidence, for
example, put Hy = [py — J, iy + J] and assess the evidence in favor or
against, but this isn't done with p-values

- basic to resolving all these issues is to use a valid measure of evidence
which the p-value isn't
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Definition A map C : X — 2% is a y-confidence region for { = ¥ () if
Py(¥(0) € C(X)) > -y for every 6 € O.
- when x is observed then record C(x) as "typically" the estimate is in
C(x) and so the "size" of C(x) serves as a measure of the accuracy of the
estimate
Example Absurd confidence intervals
- the model X = R, fy(x) = (1 — 0)f(x) + 0f (x — 1) where f is the
N(0,1) density function and © = [0, 1]
- Plante(1991) a 0.95-confidence interval for 6 that is uniformly most
accurate and unbiased is given by

C(x) = { [0, 1] —1.68148 < x.§ 2.68148

¢ otherwise

Example Fieller (1954) Some problems in interval estimation. JRSSB, 16,
2, 175-185.

j.id. . j.i.d.
-x=(x1,..., Xm ) M N(y,a%) ind. of y = (y1,..., Yn) " N(U,(T%)
and ¢ = ¥ (u,v) = u/v various frequentist approaches produce absurd
confidence intervals (sometimes equal to R!)
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4. Bayesian Inference

- the prior 7t (a proper probability distribution on ®) is added to the
ingredients, model {f : 6 € ©} and data x

- gives a joint prior probability distribution (6, x) ~ 77(0)fs(x)
- recall the prior 7t expresses our beliefs about the true value of 6

- after observing x the principle of conditional probability implies we
replace 7t by the posterior

m(x)
where m(x f® x) d@ is the prior predictive distribution of x
- how to choose a prlor? eI|C|tat|on
Example location normal
“x = (X1, xn) K N(p, 02) with 1 € RY, 02 known and 7 a

N(pg, T3) dist. so

— 2 n
(1 %) o 7)) o exp {—(P‘Q%‘fﬂ} exp {—;2 > (x - y)2}
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and using L7y (xi — p)? = n(x — p)* + LIy (x; — %)?

ol rp { -3 [ ot

) ‘7(2)
and
(n—po)* | n(x—p)?
3 o

yfg (nx)?
> T >
To 7%

-1 _
1 n Yo . NX

— <2 + 2> <2 + 2) + constant
L T 0%

_ (i,
- B

and so putting
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- how to choose the hyperparameters (1, 73)?

- recall the data is the result of a measurement process so an observation
will fall in some known interval (/, u) with "virtual certainty" (prob. 0.99)

- so one possibility is p1, = (/ + u)/2 and choose Ty so that
DO((u—py)/70) —P((I — pg)/T0) = 0.99 (conservative)

-eg. (l,u) =(3,10) so y, = 6.5 and

099 = @((10-6.5)/19) — D((3—6.5)/70)
®(35)/T9) — P(—3.5)/10) = 2d(3.5)/7p) — 1
Ty = 3.5/®1(0.995) = 1.358786

- so the N(6.5,1.358782) expresses prior beliefs about u

-if (7(2) = 2,n =10, X = 7.3 is observed, then the posterior of y is
N (p,, T2) = N(7.23,0.18)
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- for a marginal parameter p = ¥ (0) we have the marginal prior and
posterior

) = [, O ()6
we(Y|x) = /{ oy (O () a8

where Jy(60) is a volume distortion factor (see text Appendix)

- two properties
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(1) Consistency: the posterior for 1 is the same as if we start with the
ingredients ({m(-|¢) : ¢ € ¥}, 7wy, x) where

mxly) = [ wE19)(x) 06
7(6) ¥ (6)
0 27N
(6] ¥) —)
(the "nuisance" parameters have been integrated out)

Proof:

Ty (Y| x) = /{ oy 01X 0(0) 00

_ / MJ\Y(Q) do
(6= (6)}

m(x)
_ y(y) / 7t(0)Jy (0)
m(x) Jie:p=¥(0)} ¥ (Y)
g (Y)m(x | ¥)

m(x)

fo(x) d6
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(2) if after observing x, new independent data y is observed with model
{gp : 6 € ©), then the posterior for ¢ based on (x,y) is

my(P)mix.y |¢) _ me(@[x)m(x) m(x,y[9)
m(x,y) m(x | ) m(x,y)
my (Y [ x)m(y | ¢, x)
m(y | x)

my(Plxy) =

(so the posterior for 1 based on x now serves as a prior on )
- when ¢p =6

(0] x,y) = (@ x)my [6.x) _ 7(6]x)gu(y)

m(y | x) m(y | x)
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MAP (maximum a posteriori) inferences

- the values ¥ are ordered: ¢, is preferred at least as much as ¢,
whenever Ty (¢, | x) < ¥ (1, | x)

- motivation from the discrete case, 1, is preferred at least as much as ¢,
whenever the posterior prob. of 1, is at least as big as the posterior prob.

of P,
- essentially evidence is being measured here by posterior probabilities
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E: posterior mode 1(x) = argsup 7ty (1P | x) with error measured by the
size of the 7y-highest posterior density (hpd) region

Gry(x) = {9 : Gy (e (P |x) [x) =1 =7}

where Gy (- | x) is the posterior cdf of 7y (¢ | x) so ITy(Cy ,(x) | x) > v

- how to choose ? better than -likelihood regions because  is a
probability here

H: to assess Hy = {1} compute (Bayesian p-value)

Gy (79 (Yo | x) | x) = Iy (e (¥ | x) < 7w (P | x) | x)

and if this is small conclude evidence against (and no separate measure of
the strength of the evidence)

- how small for evidence against?
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Example /ocation normal
-u(x)=p, =723

C\y’0_95 (X) = ]/l(X) + 1.96T, = [6.40, 806]

is the 0.95-hpd interval for u
- assess Hy = {7} then Gy (¢ (7| x)|x) > 0.05 and so no evidence
against

- in general there are two problems with MAP inferences with (2) more
serious than (1)

(1) the inferences are not invariant under reparameterizations in the

E then posterior of £ = E(¢) is

(8 |x) = me(E71(E) [ x)J=(E7H(E))

and Jz(E71(¢)) is not constant when Z is nonlinear so &(x) # Z(¢(x))
in general

. P 1—1,onto,smooth
continuous case for if & : ¥ —
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Example /ocation normal
SE=E() = ¥ so =&Y and Ja(271(8)) = [¢]72/%/3 50 the

posterior of ¢ is
-2/3 1/3 _
re(@ ) = S (c m)

37Ty Ty

which has an infinite singularity at & = 0 but in any case ¢(x) # u3(x)

(2) probabilities do not measure evidence
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